General conditions
3phase SPWM
$\mathbf{V}_{\text {GEon }}=15 \mathrm{~V}$
$\mathbf{V}_{\text {GEoff }}=-15 \mathrm{~V}$
$\mathbf{R}_{\text {gon }}=32 \Omega$
$\mathbf{R}_{\text {goff }}=32 \Omega$

Figure 1
Typical average static loss as a function of output current
$\mathrm{P}_{\text {loss }}=\mathrm{f}\left(\mathrm{l}_{\text {out }}\right)$

$\begin{array}{ll}\text { At } \\ \mathrm{T}_{\mathrm{j}}= & 149 \quad \text { C }\end{array}$
$\mathrm{Mi}^{*} \cos \varphi$ from -1 to 1 in steps of 0,2

Figure 3

Typical average switching loss
as a function of output current

At
$\begin{array}{lll}\mathrm{T}_{\mathrm{j}}= & 149 \quad{ }^{\circ} \mathrm{C}\end{array}$
DC link $=600 \quad \mathrm{~V}$
$\mathrm{f}_{\text {sw }}$ from $\quad 2 \mathrm{kHz}$ to 16 kHz in steps of factor 2

Figure 2

Typical average static loss as a function of output current
$P_{\text {loss }}=f($ lout $)$

At

$T_{j}=$	$149 \quad{ }^{\circ} \mathrm{C}$

$\mathrm{Mi}^{*} \cos \varphi$ from -1 to 1 in steps of 0,2
Figure 4
Typical average switching loss
as a function of output current $\quad P_{\text {loss }}=f\left(l_{\text {out }}\right)$

[^0]

At

$T_{j}=$	149	${ }^{\circ} \mathrm{C}$
$D C$ link $=$	600	V
$f_{s w}=$	4	kHz

Th from $\quad 60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$

Figure 7

Typical available 50 Hz output current as a function of $\mathrm{Mi}^{*} \cos \varphi$ and switching frequency
$\mathrm{I}_{\text {out }}=\mathrm{f}\left(\mathrm{f}_{\text {sw }}, \mathrm{Mi}^{*} \cos \varphi\right)$

At		
$T_{j}=$	149	${ }^{\circ} \mathrm{C}$
$D C$ link $=$	600	V
$\mathrm{~T}_{\mathrm{h}}=$	80	${ }^{\circ} \mathrm{C}$

Typical available 50 Hz output current

At
$\mathrm{T}_{\mathrm{j}}=149 \quad$ C
DC link $=600 \quad V$
$\mathrm{Mi}^{*} \cos \varphi=0,8$
Th from $\quad 60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$

Figure 8

Typical available $\mathbf{0 H z}$ output current as a function

At

$T_{j}=$	149	\circ
$D C$ link $=$	600	V
T_{h} from	$60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$	
$\mathrm{Mi}=$	0	

At		
$T_{j}=$	149	C
DC link $=$	600	V
$\mathrm{Mi}=$	1	
$\cos \varphi=$	0,80	
$\mathrm{f}_{\text {sw }}$ from	2 kHz to 16 kHz in steps of factor 2	

Figure 11

Typical available overload factor as a function of

| motor power and switching frequency | $P_{\text {peak }} / P_{\text {nom }}=f\left(P_{\text {nom }}, f_{\text {sw }}\right)$ |
| :---: | :---: | :---: | :---: | :---: |

At

$\mathrm{T}_{\mathrm{j}}=$	149	${ }^{\circ} \mathrm{C}$
DC		

DC link = 600
$\mathrm{Mi}=\quad 1$
$\cos \varphi=\quad 0,8$
f_{sw} from $\quad 1 \mathrm{kHz}$ to 16 kHz in steps of factor 2
$\mathrm{T}_{\mathrm{h}}=80 \quad{ }^{\circ} \mathrm{C}$
Motor eff $=0,85$

Figure 10
Inverter
Typical efficiency as a function of output power efficiency $=f\left(\mathrm{P}_{\text {out }}\right)$

At
$\mathrm{T}_{\mathrm{j}}=\quad 149 \quad{ }^{\circ}$
DC link $=600 \quad V$
$\mathrm{Mi}=1$
$\cos \varphi=\quad 0,80$
f_{sw} from $\quad 2 \mathrm{kHz}$ to 16 kHz in steps of factor 2

[^0]: At
 $\mathrm{T}_{\mathrm{j}}=\quad 149 \quad{ }^{\circ}$
 DC link $=600 \quad \mathrm{~V}$
 f_{sw} from $\quad 2 \mathrm{kHz}$ to 16 kHz in steps of factor 2

